14,495 research outputs found

    CHEC: A Compact High Energy Camera for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array will provide unprecedented sensitivity and angular resolution to gamma rays across orders of magnitude in energy. Above 1 TeV up to around 300 TeV an array of Small-Sized Telescopes (SSTs) will cover several kilometres on the ground. The Compact High-Energy Camera (CHEC) is a proposed option for the camera of the SSTs. CHEC contains 2048 pixels of physical size about 6 mm x 6 mm, leading to a field of view of over 8 degrees. Electronics based on custom ASICs (TARGET) and FPGAs sample incoming signals at a gigasample per second and provide a flexible triggering scheme. Waveforms for every pixel in every event are read out without loss at over 600 events per second. A telescope prototype in Meudon, Paris, saw first Cherenkov light from air showers in late 2015, using the first CHEC prototype. Research and development for CHEC is currently focussed on taking advantage of the latest generation of silicon photomultipliers (SiPMs).Comment: 12 pages, 9 figures, PSD11. arXiv admin note: substantial text overlap with arXiv:1709.0579

    A Compact High Energy Camera (CHEC) for the Gamma-ray Cherenkov Telescope of the Cherenkov Telescope Array

    Full text link
    The Gamma-ray Cherenkov Telescope (GCT) is one of the Small Size Telescopes (SSTs) proposed for the Cherenkov Telescope Array (CTA) aimed at the 1 TeV to 300 TeV energy range. GCT will be equipped with a Compact High-Energy Camera (CHEC) containing 2048 pixels of physical size about 6×\times6~mm2^2, leading to a field of view of over 8 degrees. Electronics based on custom TARGET ASICs and FPGAs sample incoming signals at a gigasample per second and provide a flexible triggering scheme. Waveforms for every pixel in every event are read out are on demand without loss at over 600 events per second. A GCT prototype in Meudon, Paris saw first Cherenkov light from air showers in late 2015, using the first CHEC prototype, CHEC-M. This contribution presents results from lab and field tests with CHEC-M and the progress made to a robust camera design for deployment within CTA.Comment: All CTA contributions at arXiv:1709.0348

    Phase space simulation of collisionless stellar systems on the massively parallel processor

    Get PDF
    A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem

    Thermal emission from interstellar dust in and near the Pleiades

    Get PDF
    IRAS survey coadds for a 8.7 deg x 4.3 deg field near the Pleiades provide evidence for dynamical interaction between the cluster and the surrounding interstellar medium. The far-infrared images show large region of faint emission with bright rims east of the cluster, suggestive of a wake. Images of the far-infrared color temperature and 100 micron optical depth reveal temperature maxima and optical depth minima near the bright cluster stars, as well as a strong optical depth peak at the core of the adjacent CO cloud. Models for thermal dust emission near the stars indicate that most of the apparent optical depth minima near stars are illusory, but also provide indirect evidence for small interaction between the stars and the encroaching dust cloud

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a κ\kappa-conditioned problem in O(κ)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(κ1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(κ)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    CoFeD: A visualisation framework for comparative quality evaluation

    Get PDF
    Evaluation for the purpose of selection can be a challenging task particularly when there is a plethora of choices available. Short-listing, comparisons and eventual choice(s) can be aided by visualisation techniques. In this paper we use Feature Analysis, Tabular and Tree Representations and Composite Features Diagrams (CFDs) for profiling user requirements and for top-down profiling and evaluation of items (methods, tools, techniques, processes and so on) under evaluation. The resulting framework CoFeD enables efficient visual comparison and initial short-listing. The second phase uses bottom-up quantitative evaluation which aids the elimination of the weakest items and hence the effective selection of the most appropriate item. The versatility of the framework is illustrated by a case study comparison and evaluation of two agile methodologies. The paper concludes with limitations and indications of further work
    • …
    corecore